skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eichenwald, Adam J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Desert communities are threatened with species loss due to climate change, and their resistance to such losses is unknown. We constructed a food web of the Mojave Desert terrestrial community (300 nodes, 4080 edges) to empirically examine the potential cascading effects of bird extinctions on this desert network, compared to losses of mammals and lizards. We focused on birds because they are already disappearing from the Mojave, and their relative thermal vulnerabilities are known. We quantified bottom‐up secondary extinctions and evaluated the relative resistance of the community to losses of each vertebrate group. The impact of random bird species loss was relatively low compared to the consequences of mammal (causing the greatest number of cascading losses) or reptile loss, and birds were relatively less likely to be in trophic positions that could drive top‐down effects in apparent competition and tri‐tropic cascade motifs. An avian extinction cascade with year‐long resident birds caused more secondary extinctions than the cascade involving all bird species for randomized ordered extinctions. Notably, we also found that relatively high interconnectivity among avian species has formed a subweb, enhancing network resistance to bird losses. 
    more » « less